P1
P3
شکل ۶-۶: محل نقاط بهینه چاه های تزریق کننده
۶-۶- نتیجه گیری
در این فصل ابتدا ویژگی های منحصر به فرد مدلسازی مخزن بر پایه SL ها نظیر ضرایب اختصاص و بازدهی تزریق کننده ها بررسی شد. سپس با کمک این اطلاعات ارزشمند، مسئله بهینه یابی مکان چاه ها به روش الگوریتم تصادفی ژنتیک انجام شد. نشان داده شد که ترکیب این اطلاعات منجر به کاهش تعداد شبیه سازی های مورد نیاز و همگرایی سریع تر به پاسخ بهینه می شود.
فصل هفتم
طراحی کنترل کننده فازی به منظور بهینه سازی یک تابع هدف مشخص در مخازن نفتی
۷-۱- مقدمه
در این فصل ابتدا تابع هدف مورد نظر جهت بهینه سازی معرفی می شود. این تابع هدف میزان تولید آب ناشی از چاه تزریق کننده می باشد. در این مسئله مکان یابی تلاش می شود تا با حفر چاه تزریق یا تولید در یک مکان مناسب، آب تولیدی ناشی از چاه های تزریق کننده مینیمم شود. اگر بتوان در بازه شبیه سازی مخزن، زمان رسیدن آب به تولید کننده را کاهش داد به هدف مسئله می توان دست یافت. همچنین به طور غیر مستقیم فرصت بیشتری به میزان تولید نفت در مخزن داده شده است. در ادامه برای برآورده کردن این هدف از ویژگی های مخزن نظیر مقادیر آب تولیدی در هر چاه و همچنین بهره جستن از اطلاعات سودمند مبتنی بر SL ها و دانش افراد خبره در حوزه مهندسی نفت و مخازن استفاده می شود و مجموعه ای از قواعد فازی ساخته می شود. سپس توسط این قواعد فازی یک کنترلر فازی جهت یافتن مکان بهینه به کار گرفته می شود. در انتهای فصل با شبیه سازی مخازن و سناریوهای مختلف توانمندی روش پیشنهادی بررسی می شود.
( اینجا فقط تکه ای از متن فایل پایان نامه درج شده است. برای خرید متن کامل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. )
۷-۲- تاریخچه کنترل فازی
تئوری فازی به وسیله پروفسور لطفی زاده در سال ۱۹۶۵ در مقاله ای به نام مجموعه های فازی معرفی گردید. وی ایده اش را در مقاله “مجموعه های فازی” تجسم بخشید. با پیدایش تئوری فازی، بحث و جدل ها پیرامون آن نیز آغاز گردید. بعضی ها آنرا تایید کردند و کار روی این زمینه جدید را شروع کردند و برخی دیگر این ایراد را وارد می کردند که این ایده بر خلاف اصول علمی موجود می باشد. با وجودی که تئوری فازی جایگاه واقعی خود را پیدا نکرد، با این حال هنوز محققینی بودند که در گوشه و کنار دنیا، خود را وقف این زمینه جدید نمودند و در اواخر دهه ۱۹۶۰ روش های جدید فازی نظیر الگوریتمهای فازی، تصمیم گیریهای فازی و … مطرح گردیدند. بسیاری از مفاهیم بنیادی تئوری فازی بوسیله زاده در اواخر دهه ۶۰ و اوایل دهه ۷۰ مطرح گردید. پس از معرفی مجموعهایی فازی در سال ۱۹۶۵، او مفاهیم الگوریتمهای فازی در سال ۱۹۶۸، تصمیم گیری فازی در سال ۱۹۷۰ و ترتیب فازی را در سال ۱۹۷۱ مطرح نمود. سپس در سال ۱۹۷۳ راه حل جدیدی برای تجزیه و تحلیل سیستمهای پیچیده و فرآیندهای تصمیم گیری ارائه کرد. در این مقاله مفهوم متغیر های زبانی و استفاده از قواعد اگر-آنگاه را برای فرموله کردن دانش بشری استفاده کرد. در سال ۱۹۷۵ ممدانی و آسیلیان چهار چوب اولیه ایی را برای کنترل کننده فازی مشخص کردند و کنترل کننده فازی را به یک موتور بخار اعمال نمودند. در سال ۱۹۷۸ اولین کنترل کننده فازی را برای کنترل یک فرایند صنعتی کامل بکار برده شد و آن کنترل فازی کوره سیمان بود. در سال ۱۹۸۰ سوگنو شروع به ساخت اولین کاربرد ژاپنی فازی نمود، کنترل تصفیه آب فوجی. در سال ۱۹۸۳ او مشغول کار بر روی یک ربات فازی شد، ماشینی که از راه دور کنترل شده و عمل پارک را انجام میداد. قبل از این رویدادها تئوری فازی چندان در ژاپن شناخته شده نبود ولی پس از آن موجی از توجه مهندسان، دولتمردان و تجار را فرا گرفت بنحوی که در اوایل دهه ۹۰ تعداد زیادی از لوازم و وسایلی که بر اساس تئوری فازی کار میکردند، در فروشگاه ها به چشم میخورد.
امروزه سیستم های فازی در طیف وسیعی از علوم و فنون کاربرد پیدا کرده اند، از کنترل، تخمین، پردازش سیگنال، ارتباطات، ساخت مدارهای مجتمع و سیستم های خبره گرفته تا بازرگانی، پزشکی، دانش اجتماعی و … . الگوریتمهای این سیستم بر اساس شهود و تجربه با مجموعه ای از قواعد تصمیم گیری حسی ـ ذهنی و یا قواعد تجربی، بدون نیاز به مدل ریاضی، توانایی کنترل و برخورد با سیستم های پیچیده غیرخطی و نادقیق را دارند و پیاده سازی آن ها نیز ساده تر از روش های کلاسیک می باشد. کنترل فازی یک شیوه برخورد با مسائل مدل سازی را توسط ترمهای زبانی پیشنهاد می کند.
در عمل بسیاری از سیستم های غیر خطی دارای عدم قطعیت می باشند و چگونگی کنترل آنها یک موضوع مهم محسوب می شود. کنترل فازی بر اساس استنتاج تقریبی در سیستم های فازی بنا شده است. مزیت کنترل فازی نسبت به کنترلر های دیگر این است که بدون نیاز به مدل دینامیکی دقیق از سیستم میتوان سیستم کنترل را به طور مناسب طراحی کرد.
۷-۲-۱- مبانی سیستمهای فازی
سیستمهای فازی، سیستمهایی هستند با تعریف دقیق و کنترل فازی نیز نوع خاصی از کنترل غیر خطی میباشد. دو نوع توجیه برای تئوری سیستمهای فازی وجود دارد:
دنیای واقعی ما بسیار پیچیده تر از آن است که بتوان یک توصیف و تعریف دقیق برای آن بدست آورد، بنابراین باید یک توصیف تقریبی یا همان فازی که قابل قبول و قابل تجزیه و تحلیل باشد، برای یک مدل معرفی کرد.
با حرکت دنیا بسوی عصر اطلاعات، دانش و معرفت بشری بسیار اهمیت پیدا میکند. بنابراین به فرضیه هایی نیاز است که بتوان دانش بشری را به شکلی سیستماتیک فرموله کرده و آنرا به همراه سایر مدلهای ریاضی در سیستمهای مهندسی قرار داد.
سیستمهای فازی، سیستم های مبتنی بر دانش یا قواعد[۱۳۰] میباشند. قلب یک سیستم فازی یک پایگاه دانش بوده که از قواعد اگر- آنگاه فازی تشکیل شده است. یک قانون اگر- آنگاه فازی، یک عبارت اگر- آنگاه است که بعضی از کلمات آن بوسیله توابع عضویت پیوسته مشخص شده اند. به طور خلاصه، نقطه شروع ساخت یک سیستم فازی بدست آوردن مجموعه ایی از قواعد اگر- آنگاه فازی از دانش افراد خبره یا دانش حوزه مورد بررسی میباشد. مرحله بعدی ترکیب این قواعد در یک سیستم واحد است. سیستمهای فازی مختلف از اصول و روش های متفاوتی برای ترکیب این قواعد استفاده می کنند.
ساختار اصلی یک سیستم فازی خالص در شکل ۷-۱ نشان داده شده است. پایگاه قواعد فازی مجموعه ایی از قواعد اگر- آنگاه فازی را نشان میدهد. موتور استنتاج فازی[۱۳۱] این قواعد را به یک نگاشت از مجموعه های فازی در فضای ورودی به مجموعه های فازی در فضای خروجی بر اساس اصول منطق فازی ترکیب میکند.
شکل ۷-۱: ساختار اصلی سیستم های فازی خالص [۵۵]
مشکل اصلی در رابطه با سیستم های فازی خالص این است که ورودی ها و خروجی های آن مجموعه های فازی می باشند (واژه هایی در زبان طبیعی). حال آنکه در سیستم های مهندسی، ورودی ها و خروجی ها متغیرهایی با مقادیر حقیقی می باشند. به منظور استفاده از سیستمهای فازی خالص در سیستمهای مهندسی، یک روش ساده اضافه کردن یک فازی ساز در ورودی ، که متغیرهای با مقادیر حقیقی را به یک مجموعه فازی تبدیل کرده و یک غیر فازی ساز که یک مجموعه فازی را به یک متغیر با مقدار حقیقی در خروجی تبدیل می کند، می باشد. نتیجه یک سیستم فازی با فازی ساز و غیر فازی ساز بوده که در شکل (۷-۲) نمایش داده شده است. به طور کلی هر سیستم فازی دارای چهار بخش می باشد: پایگاه قواعد فازی[۱۳۲]، موتور استنتاج فازی، فازی سلز و غیر فازی ساز. در قسمت بعد هر کدام از این بخش ها به طور مختصر بررسی خواهد شد.
شکل ۷-۲: ساختار اصلی سیستم های فازی با فازی ساز و غیرفازی ساز
۷-۲-۲- پایگاه قواعد
یک پایگاه قواعد فازی از مجموعه ایی از قواعد اگر- آنگاه فازی تشکیل می شود. پایگاه قواعد فازی از این نظر که سایر اجزاء سیستم فازی برای پیاده سازی این قواعد به شکل موثر و کارا استفاده می شوند، قلب یک سیستم فازی محسوب میشوند. بطور مشخص، پایگاه قواعد فازی شامل قواعد اگر- آنگاه زیر است:
اگر و … و است ، آنگاه است.
که در آن به ترتیب و مجموعه هایی فازی هستند و , به ترتیب متغیرهای ورودی و خروجی (زبانی) سیستم فازی می باشند. همچنین شماره قاعده فازی می باشد.
۷-۲-۳- موتور استنتاج فازی
در یک موتور استنتاج فازی، اصول منطق فازی برای ترکیب قواعد اگر- آنگاه در پایگاه قواعد فازی به نگاشتی از مجموعه A’ در U به مجموعه فازی B’ در V استفاده شده اند. بدلیل اینکه هر پایگاه قواعد فازی در عمل شامل بیش از یک قاعده می شود، دو روش برای نتیجه گیری از روی یک مجموعه قاعده وجود دارد:
استنتاج مبتنی بر ترکیب قواعد.
استنتاج مبتنی بر قواعد جداگانه.
دو نوع از موتورهای استنتاج که عموماً در سیستم های فازی و کنترل فازی استفاده می شوند، در زیر آمده است:
موتور استنتاج ضرب[۱۳۳]:
موتور استنتاج مینیمم[۱۳۴]:
۷-۲-۴- انواع فازی ساز
فازی ساز به عنوان نگاشتی از یک نقطه حقیقی به یک مجموعه فازی در تعریف شده است. معیارهای اصلی که در طراحی فازی ساز باید رعایت شود شامل موارد زیر می باشد:
فازی ساز باید این حقیقت را در نظر بگیرد که ورودی در نقطه قطعی است، بدین معنی که مجموعه فازی باید در نقطه مقدار تعلق بزرگی داشته باشد.
اگر ورودی سیستم فازی با نویز خراب شود، فازی ساز باید بتواند تاثیر نویز را کاهش داده و حذف کند.
فازی ساز باید بتواند در ساده تر کردن محاسبات مربوط به موتور استنتاج فازی نقش داشته باشد.
در ادامه برخی از فازی سازهای معروف بررسی خواهد شد.
الف) فازی ساز منفرد[۱۳۵]: فازی ساز منفرد یک نقطه با مقدار حقیقی را به یک منفرد فازی در می نگارد که مقدار تعلق در نقطه برابر با یک و در سایر نقاط، برابر با صفر میباشد :
ب) فازی ساز گوسین[۱۳۶]: فازی ساز گوسین نقطه را به مجموعه در با تابع تعلق گوسین زیر مینگارد.
ج) فازی ساز مثلثی[۱۳۷]: فازی ساز مثلثی نقطه را به مجموعه A’ در U با تابع تعلق زیر مینگارد.
۷-۲-۵- انواع غیر فازی سازها[۱۳۸]:
غیر فازی ساز به عنوان یک نگاشت از مجموعه فازی در ( که خروجی موتور استنتاج فازی است) به یک نقطه قطعی تعریف میگردد. بطور مفهومی وظیفه غیر فازی ساز مشخص کردن نقطه ای است که بهترین نماینده مجموعه فازی باشد. این موضوع مشابه مقدار میانگین یک متغیر تصادفی می باشد. مجموعه فازی به طرق مختلفی شناخته میشود، انتخاب های مختلفی برای تعیین این نقطه وجود دارد. سه معیار برای انتخاب غیر فازی ساز می توان در نظر گرفت:
توجیه پذیری: نقطه از نظر شهودی باید نشان دهنده مجموعه فازی باشد. به عنوان مثال نقطه ای با درجه عضویت بالا در باشد.
سادگی محاسبات: این معیار به ویژه برای کنترل فازی که در آن کنترلر بلادرنگ عمل می کند، بسیار مهم است.
پیوستگی: یک تغییر کوچک در نباید به تغییر بزرگی در منجر شود.
در ادامه غیر فازی سازهای پر کاربرد معرفی شده اند.